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ACTIVE CONTROL OF ENVIRONMENTAL
NOISE, II: NON-COMPACT ACOUSTIC SOURCES

S. E. W  B. V

University of Huddersfield, School of Engineering, Huddersfield HD1 3DH, England
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In this paper the acoustic interference across high frequency finite source distributions
in unrestricted space is considered, and how to represent it with a finite number of discrete
sources. The problem of creating an acoustic shadow from these sources by using a
controlled array of discrete cancellers is then considered. Finally, data is given to illustrate
the effectiveness of the approach. It is shown that deep shadows are possible even for
complex high frequency sources.
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1. INTRODUCTION

This paper is the second in a series on Active Control of Environmental Noise. The first
paper [1] was concerned with the basic properties of low frequency acoustic shadows
generated by an array of controlled compact cancelling sources, where the acoustic
wavelength is large compared with the primary source size. In this situation the radiation
field is relatively simple; that is, its amplitude and phase across a wave front change
little.

This present paper is concerned with the problem of generating acoustic shadows from
complex high frequency sources, or from large extended source distributions where
the acoustic wavelength is now small compared with the source dimension. In this case,
phase and amplitude vary considerably across the resulting wavefront.

The basic effect of these non-compact free field sources is considered. The problem of
representing these source distributions with an array of discrete sources is investigated.
The concept of non-discreteness or poor discrete representation is considered, where the
acoustic wavelength now becomes small compared to the separation distance between
discrete sources.

The extent of the near field from these discrete source arrays is also established, where
the simplified far field radiation equation breaks down. Finally the optimization and
performance of cancelling arrays to produce acoustic shadows from non-compact, discrete
representation of finite source distributions is investigated.

2. FREE FIELD CONCEPTS

2.1.     

There is debate regarding the ability to cancel sound by using active noise control at
high frequencies. Also, there is confusion regarding the effectiveness of cancelling sound
in enclosures compared to unrestricted space.
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Within enclosures, the boundaries dominate through restricting the field. Standing waves
occur, through multiple reflection paths, resulting in complex resonant fields for acoustic
wavelengths smaller than the enclosure dimensions. In this situation the size of the source
is not important and the best that can be hoped for, for high modal density, is cancellation
within a fractional wavelength of the error detector.

However, in unrestricted space, the situation is quite different. It is not generally
appreciated that if the source, cancelling device and error detector are successively aligned,
then the quiet zone can now extend out to infinity, no matter what the frequency. In this
case, the complexity of the propagation field now depends on the size of the primary source
compared with the acoustic wavelength. Generally, because sources are usually smaller
than enclosers, complex radiation from free field sources tends to occur at a much higher
frequency, and is of a different nature than that within enclosures.

Most of the contemporary literature is concerned with active noise control in enclosures.
The following sections are designed to explore free field concepts and to establish the
ability of ANC to suppress non-compact sources outdoors.

2.2.  -

In free field, then, it is the primary source size that is important. When the source is
small compared with the wavelength, the radiation is basically spherical, with constant
phase across its wavefront. As the wavelength l becomes less than the source size D, i.e.,
l/DQ 1, phase changes occur in the radiation field, resulting in destructive interference,
particularly at large angles u from the normal to the source surface.

As the frequency continues to rise, a series of alternate decaying maxima and zeroes
occur, as described in more detail in section A4 of the Appendix. The interference function
xc that describes this effect for a line source, is shown in Figure A3, and is given by equation
(A15) as

xc =(sin g)/g, g=(pD sin u)/l. (1)

For small g (low frequencies or small sources) xc is unity and no acoustic interference
occurs, resulting in a simple propagating field. For higher frequencies or larger sources the
first zero (z=1) occurs when g= p, giving

uz1 = sin−1 (l/D) (2)

When l/DQ 1, uz1 Q 90° and the first zero (phase reversal) for z=1 appears in the
radiation field. This provides a convenient definition of the onset of source non-
compactness. For multi-dimensional sources, there will be an equivalent interference
function for each dimension, as explained in section A6 of the Appendix.

2.3.  

If the continuous source distribution is now represented by an array of equispaced
discrete sources, then the interference function derived in section A8 and shown in
Figure A6 becomes, according to equations (A37) and (A38),

xd =sin Ng /sin g, g=(pd sin u)/l. (3)

Here d is the separation distance between sources (d=D/N−1) and N is the number of
discrete sources across the distribution. Now the first zero is when Ng= p.

Additionally, this function has non-decaying major maxima occurring when g=mp,
where m is an integer. These major maxima sandwich N−2 minor maxima and must be
avoided for good discrete representation of continuous source distributions. The first
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major maximum (m=1) occurs when g= p, giving

um1 = sin−1 (l/d). (4)

When l/dQ 1, um1 Q 90° and the first major maximum appears in the radiation field.
In this case xd ceases to become similar to, or representative of, xc , thus providing a
convenient definition of the onset of poor discrete representation, or non discreteness,
when l/dQ 1.

2.3.  

Finally the extent of the near field, where the above far field radiation equations
become invalid, is considered in section A3 of the Appendix. Here, because of a range of
source–observer distances, it is not possible to obtain closed form solutions and computed
fields have to be relied on.

On approaching a source the sound pressure usually doubles (increases 6 dB) per
halving of the distance to the source. For a non-compact source this doubling ceases at
some distance from the source, through destructive interference across the finite source
distribution.

The onset of this near field effect can be approximated by the first zero as the observer
approaches the source, given by equation (A11c), as

rz1 2 (D cos u)2/4l. (5)

It can be seen from this equation that the near field is directional, stretching away from
the centre of the source and increasing with frequency and source size.

3. COMPUTATIONS

3.1.   

The compactness (l/D) for a continuous source distribution, and the discreteness
(l/d) for an array of discrete sources representing a continuous source distribution
are summarized in Table 1. Here l, D and d are the wavelength, source size and
discrete source separation distance respectively. p and N are the total number of discrete
sources and the number of sources per row or column for a square source distribution,
respectively.

For simplicity, l is taken as 4 m at 100 Hz (instead of 3·43 m). The range of
frequencies 100–6400 Hz and source sizes 0·25–4·0 m covers the parameter sizes of
interest. The computation is performed for D=2 m. For laboratory investigations
D=1 m is more practical, and for outside full scale measurements D=4 m is more
appropriate.

The heavily shaded areas give the onset of non-compactness (l/D=1). For values less
than one, the source is regarded as non-compact. The lightly shaded areas give the onset
of non-discreteness (l/d=1). For values less than one, the source is considered to have
poor discrete representation. For instance, a 2 m square source will cease to be compact
at f=200 Hz, and will require a discrete source spacing less than d=2 m for good discrete
representation.

3.2.  

The acoustic field is observed over a 60°×60° observer sector of a sphere 50 m normal
to the centre of a D=2 m square source. The primary source is a simulated continuous
source distribution with an excessively large number of discrete sources (40 rows by 40
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T 1

The determination of source compactness (l/Dq 1) and source discreteness (l/dq 1) for
various source frequencies ( f ), sizes (D) and numbers of point sources (p)

columns of sources: i.e., N=40 and p=1600). The total source strength of all sources
is Qp = p× qp =1 m3/s, and from equation (A46) the separation distance between sources
is d=D/(n−1)=2/39=0·051 m. The speed of sound is taken as c=343 m/s and the
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density of air r=1·21 kg/m3. For sound pressure normal to the source surface (u=0°)
then sin g/g=1 in equation (A15), and from equation (A3) the sound pressure amplitude
is then given by

P=(rQ/2ro )f=0·0121f. (6)

For example, if f=100 Hz, P=1·21 Pascals, or in dB relative to 20 mPa (threshold of
hearing)

P=20 log 01·21
20

1061=95·64 dB1 96 dB. (7)

For each doubling in frequency, 6 dB is added.

3.3.   

For Figure 1(a) the frequency is chosen so that the source is marginally compact;
i.e., l/D=1. For a source dimension of 2 m, the wavelength l must be 2 m, giving a
frequency f= c/l=343/2=171 Hz. Also for d above, l/d=39, which confirms good
discrete representation or a near continuous source description. The spherical-like
directivity pattern visible in relief and circular rings in contour shows a modest off-axis
sound reduction. This corresponds to the (sin g)/g interference function becoming less than
unity as the observer angle u increases from 0° to 230°, giving xc =0·64 or −3·9 dB.
For l/D�1 or uz�90° (that is, a compact or near point source situation) the directivity
function would become unity, giving a flat directivity (equal sound pressure) over the
60°×60° observer sector.

3.4. - 

In Figure 1(b) is shown the effect of considerable acoustic interference for a non-
compact source, again with near continuous source representation (p=1600). Here the
frequency has been increased to f=800 Hz, l=0·429 m, making l/D=0·214 and
l/d=8·36, confirming the non-compact ‘‘continuous’’ source condition. The resulting
complex interference pattern can be understood by referring to Figure A3. Here, there
is a zero order maximum of unity, (sin g/g=1 (0 dB), then a first order maximum
of 0·2 (14 dB down) followed by a succession of maximums that decay at 6 dB per
doubling in angle. The first zero (uz1) and maximum (un1) predicted by equations (A20) and
(A18) are uz1 = sin−1 (l/D)=12·4° and un1 = sin−1 (3l/2D)=18·8°, followed by multiple
zeros approximately every 12.4°. The slight distortion towards the corners of the
directivity, is caused through the atlas effect; i.e., projecting a spherical surface on to a
flat plane.

3.5.    

In Figure 1(c) is shown the same non-compact source situation (D=2, f=800 Hz,
l=0·429 m, l/D=0·214), except that here it has poor discrete representation. The source
distribution of 1600 point sources is now replaced by only three rows by three columns
of sources, giving a total of nine point sources; i.e., p=9, N=3. The acoustic interference
pattern is now considerably changed.

To understand the new pattern it is useful to refer now to Figure A6. Here, there is a
series of non-decaying (equal amplitude) major maxima, sandwiching (Nn =N−2=1)
minor maxima. The separation between sources is d=D/(N−1)=2/(3−1)=1 m,
giving l/d=0·429. One sees from equation (A45) that the first zero occurs at
uz1 = sin−1 (l/Nd)=8·2°. From equation (A43) the first minor maximum occurs at
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Figure 1(a). Marginally compact source.

un1 = sin−1 (3l/2Nd)=12·4°, and from equation (A41) the first major maximum occurs
at um1 = sin−1 (l/d)=25·4°. The zero order major maximum (m=0) occurs at 0°.
By comparing Figures 1(b) and 1(c) it can be seen that um1 does not exist for the continuous
source case (um1�90°) producing decaying radiation with observer angle, whereas the
poor discrete representation case has non-decaying major maxima occurring across the
observation window. Also there is considerable error for un1 and uz1 for the poor discrete
source representation case (6·4° and 4·2° respectively).
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Figure 1(b). Non-compact source.

3.6.    

Figure 1(d) was computed for the same conditions as Figure 1(c) except that the source
matrix is now increased to p=6×6, giving l/d=1·07. This now gives marginally discrete
source representation, where um1 =90°, un1 =15·5°, uz1 =10·2° and Nn =N−2=4 minor
maxima between the two major maxima, situated at 0° and 90°. It can be seen now that
the directivity looks much more like the continuous source representation of Figure 1(b),
although l/d has been increased only by a factor of two. For many cases this discrete
representation (l/d1 1) is adequate.
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Figure 1(c). Pour discrete source representation.

3.7.  - 

In Figure 2(a) is illustrated the effect of the near field for various numbers of primary
sources p. The curve labelled p=3 is for a 800 Hz line source of length D=2 m
comprising three discrete sources, one in the centre and two at the ends. The onset of the
near field for an observer moving perpendicular (u=0°) to the line source and through
the centre is clearly shown. The first zero on approaching the source, rz1 for p=3, is
predicted by equation (A11c) as (D cos u)2/4l1 2·3 m (5·36l).
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Figure 1(d). Marginal discrete source representation.

Figure 1. The effect of source compactness and discreteness on the directivity pattern (D=2 m,
uo =60°×60°, ro =50 m). (a) Marginally compact source (l/D=1) with ‘‘continuous’’ representation (l/d=39,
f=171 Hz, p=40×40). (b) Non-compact source (l/D1 0·214) with ‘‘continuous’’ representation (l/d1 8·36,
f=800 Hz, p=40×40). (c) Non-compact source (l/D1 0·214) with poor discrete representation (l/d1 0·429,
f=800 Hz, p=3×3). (d) Non-compact source (l/D1 0·214) with marginal discrete representation (l/d1 1,
f=800 Hz, p=6×6).

The actual start of the near field can be seen to be at least twice that predicted for
the first zero. Also, note that the sound pressure becomes very large as the observer
approaches the discrete source at the centre of the source distribution. The two other
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Figure 2. The onset of the near field. (a) Effect of primary source number p (D=2 m, f=800 Hz); (b) effect
of source size D ( f=800 Hz, p=12×12); (c) effect of frequency f (D=2 m, p=12×12).

computed curves are for a 2 m square source, one comprising three rows by three columns
of sources (l/d1 0·429) and the other consisting of 12 by 12 sources (l/d1 2·36). All three
curves are similar, except that the position of the first zero moves slightly closer to
the source as the number of sources increases. The rz1, for p=3, is therefore the worst
case prediction.

3.8.  :  

In the case of the 12×12 source distribution (no centre source), the sound pressure
ceases to increase exponentially as the observer approaches the centre of the distribution.
Instead, it attains a finite amplitude similar to that of a continuous source distribution.
A fourth condition was also computed by using a matrix of 40×40 sources. This gave
almost identical results to the 12×12 source, showing that the 12×12 was already
representative of a continuous source distribution.
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In Figure 2(b) is shown the effect of source size for the ‘‘continuous’’ source case
(p=12×12), again for a source frequency of 800 Hz. Increasing the source size by a
factor of four (D=2 m:8 m, l/D=0·214:0·053) increases the near field first zero
rz1 by a factor of 16, according to equation (A11c). (The D=8 m horizontal scale has
been reduced by a factor of 16.) Decreasing the source size by a factor of four
(D=2 m:0·5 m, l/D=0·214:0·856) approaches the compact source condition with
seemingly no near field zeros. The SPL in the far field decreases with increasing distance
(16 times=24 dB). The SPL in the near field increases as the source becomes more
compact.

In Figure 2(c) is shown the effect of frequency on the near field zeros. Increasing the
frequency by a factor of four ( f=800 Hz:3200 Hz, l/D=0·214:0·053) increases rz1

by a factor of four according to equation (A11c). (Here the f=3200 Hz horizontal
scale has been reduced by a factor of four.) Note that the interference structure (near
field zeros) is exactly the same as for D=8 m in Figure 2(b), except that the higher
frequency zeros are closer to the source. Decreasing the frequency by a factor of four
( f=800 Hz:200 Hz, l/D=0·214:0·856), one again approaches the compact source
condition with no near field zeros. The SPL in the far field remains approximately the
same, as the frequency:distance ratio remains the same. The SPL in the near field increases
with increasing frequency.

3.9.   

From the data given in Figure A2 there does not appear to be an appreciable near field
for compact sources with l/Dq 0·5. For non-compact ‘‘continuous’’ sources, l/DQ 0·5,
the near field first zero rz1 is given approximately by

rz1 =D2/6l. (8)

The effect of the directivity term cos u in equation (A11c) is not clearly apparent. It is
masked by the noncompact directivity terms (sin g)/g in equation (A15) for angles
uq 0.

3.10.    

In Figures 3(a)–(d) is shown the directivity of an 800 Hz, 60°×60° observer sector at
radius of 3 m (7l) and 1 m (2·3l) from the centre of a p=12×12 and p=3×3, 2 m
square source surface (positions indicated by a cross on Figure 2(a)). These patterns are
now complex, as they are again a combination of both non-compact and near field
interference patterns.

In Figure 3(a), for ro =3 m and p=12×12, considerable change in directivity is shown
at the onset of the near field compared with the far field (Figure 1(b)). However, the
original pattern away from the centre of the pattern can still be recognized. In Figure 3(b),
for ro =1 m, the pattern has developed into a large SPL dominating the central part of
the pattern, although the maximum level is still similar to that for the 3 m position, with
a minimum in between, as can be seen in Figure 2(a).

In Figure 3(c) is illustrated the near field for a poor discrete source representation case
(p=3×3). Here the pattern at 3 m is barely recognizable with respect to the far field
case (Figure 1(c)). However, the sound pressure remains high across the whole window,
corresponding to the non-decaying major maxima shown in Figure 1(c). As the observer
approaches the source even more closely (ro =1 m), as in Figure 3(d) the window is again
dominated by a large central SPL. This can be confirmed in Figure 2(a), where the level
is now considerably higher for the closer source position, again with a minimum in between
the two positions.
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Figure 3(a). p=12×12, r0 =3 m.

3.11.   

According to equations (5) and (8), low frequency compact sources (l/D�1) have small
simple (monophase) near fields. For high frequency non-compact sources (l/D�1) the
near field extends to considerable distances in front of the source, and its field is complex
(multi-phased).
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Figure 3(b). p=12×12, r0 =1 m.

3.12.      

In Figures 4(a)–(d) is shown the effect of varying the primary source frequency
on the far field source directivity pattern. The source is 2 m square, radiating at 200,
400, 800 and 1600 Hz, giving compactness factors of l/D=0·86, 0·43, 0·215 and
0·107, respectively. The source has near continuous source representation (i.e., p=1600,
N=40) and the radiation pattern is measured over a 60° window at an observer distance
of 50 m.
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Figure 3(c). p=3×3, r0 =3 m.

The relief figures show the actual levels in linear scale; the contour plots are in dB,
exaggerating the lower levels, more like an audibility response. The figures show increasing
acoustic beaming normal to the surface and linearly increasing sound pressure according
to equations (6) and (7) as the frequency increases: 2·42 Pa (102 dB), 4·84 Pa (108 dB),
9·68 Pa (114 dB) and 19·36 Pa (120 dB). The first zero for each of the increasing frequencies
is at 59·3°, 25·5°, 12·4° and 6·1° respectively; the zero at 59·3° is of course outside the 230°
window.
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Figure 3(d). p=3×3, r0 =1 m.

Figure 3. The effect of the near field on the directivity pattern for various observer distances (ro ) and source
numbers (p) (D=2 m, f=800 Hz, uo =60°×60°). (a) Near field, p=12×12, ro =3 m; (b) near field,
p=12×12, ro =1 m; (c) near field, p=3×3, ro =3 m; (d) near field, p=3×3, ro =1 m.

3.13. 360°  

Although it is useful to investigate the radiation in detail over a 60°×60° window
in front of the source, it is also important to know what is happening across the full
360°: i.e., all around the source. To do this economically, and on a flat piece of paper,



30

30

dB contours
–20

–20

20

10

0

–10

–10 0 10 20–30

0.527

2.399

Λ

Γ

Linear relief

. .   . 328

Figure 4(a). f=200 Hz.

a 360°×60° observer strip is used, as shown in Figures 5(a)–(d). Again slight distortion
is observed towards a 230° elevation angle, due to the atlas effect. Three directivity
patterns, dB relief, dB contour and averaged SPL over a 15° elevation angle at an observer
distance ro =50 m are shown. These directivities are repeated for four frequencies, 200,
400, 800 and 1600 Hz, for p=40×40 and D=2 m. The maximum sound pressure from
equation (7), for example for 800 Hz and u=0°, is 114 dB. Doubling and halving the
frequency adds and subtracts 6 dB, respectively.
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Figure 4(b). f=400 Hz.

4. ACOUSTIC SHADOWS

4.1.   

It can be seen from Figure 1 that, to represent continuous source distributions
adequately by a discrete array of primary sources, then l/dp q 1. Likewise, it can be
anticipated that to generate an equal but opposite polarity anti-shadow, to form the
shadow, a similar number of secondary cancelling sources with the appropriate phase and
amplitude will be required; i.e., l/ds q 1. That is, good discrete representation is also
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Figure 4(c). f=800 Hz.

needed, for arrays of cancelling sources, to produce deep shadows. Therefore, Table 1 is
equally applicable in determining deep shadows, as in establishing good discreteness.

4.2. 15°×15°  

In Figure 6 are shown the details of a 400 Hz (l=0·858 m) shadow from a 2 m square
source (l/D=0·429). The shadow is generated by a 3×3 array of secondary sources
(cancellers) equi-spaced over a 15°×15° control angle (d=D/N−1=1 m, l/d=0·858).
The cancellers are positioned at a primary source–canceller distance of rs =1·715 m (2l).
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Figure 4(d). f=1600 Hz.

Figure 4. The effect of the source frequency on the directivity pattern (D=2 m, p=40×40, uo =60°×60°,
ro =50 m). (a) f=200 Hz; (b) f=400 Hz; (c) f=800 Hz; (d) f=1600 Hz.

A matrix of 3×3 monitoring microphones are equi-spaced within the control angle
positioned at 50 m from the primary source. The primary source is represented by
p=40×40=1600 equi-spaced point sources. The phase and amplitude of the cancellers
are optimized to give minimum collective sound pressure at the microphones, by using the
method of least squares. Further details of the shadow generating process can be found
in reference [1].
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Figure 5(a). f=200 Hz.
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Figure 5(b). f=400 Hz.
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Figure 5(c). f=800 Hz.
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Figure 5(d). f=1600 Hz.

Figure 5. The 360° uncancelled field. (a) f=200 Hz; (b) f=400 Hz; (c) f=800 Hz; (d) f=1600 Hz.



p = 12 ∞ 12 S = M = 3 ∞ 3

180

110

50
–180

(iii) Averaged shadow

dB

–120

100

90

80

70

60

–160–140 –100 –80 –60 –40 160140120100806040200–20

180–180
(ii) dB contours

–120–160 –140 –100 –80 –60 –40 160140120100806040200–20

30

–30

–10

10

Γ

(i) dB reliefΓ

dB

106.393

52.585

–50

15

–30 –10 10 50

5

–5

–15

Microphones and secondary sources positions in space:

30

Shadow angles: αsh = 15° (azimuth), βsh = 15° (elevation)

λ /d = 0.858λ /D = 0.429

System parameters:

rS = 1.715 m (2λ)

λ = 0.858 mf = 400 Hz

rM = ro = 50 m

. .   . 336

Figure 6(a). 360° shadow details.

In Figures 6(a) (i) and (ii) are shown the resulting shadow in dB relief and dB contour
for a 360° observer strip around the primary source, and 60° in elevation. In Figure 6(a)
(iii) is shown the shadow averaged across the 15° elevation control angle. The dotted curve
shows the uncancelled field with a maximum central SPL of 108 dB and a first zero at uz1 =
sin−1 l/D=25°. A shadow depth of approximately 40 dB, averaged over 15°, is shown.

Radiation is reduced to the rear (2180°), as is to be expected for an equal number
of half-wavelength primary source–canceller distances. Radiation to the side 2(20°
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Figure 6(b). Optimized secondary sources.

to 160°) is increased, approaching the maximum uncancelled primary field value. This
is to be expected, as the cancelling sources have to generate the opposite but equal
magnitude field to cancel the primary field. As the point sources are omnidirec-
tional and not phase coordinated outside the control angle, appreciable sound will be
generated to the side. This can be removed by using directional or layered cancelling
sources.

In Figure 6(b) are shown the amplitude and phase of the three rows by three columns
of cancelling sources (numbered from top right to bottom left). It can be seen that
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Figure 6(c). Antishadow.

the canceller in the centre of the source array is the most active. Here qs =0·5 m3/s, or
relative to the standard secondary source strength qss , where Qp =1 m3/s and S=9,

qss =
Qp

s
= 1

9m
3/s, qs /qss =4·5, 20 log (qs /qss )=13 dB. (9)
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Figure 6(d). Residual field (shadow).

Figure 6. The 15°×15° standard shadow (D=2 m, f=400 Hz, uo =60°×60°, ro =50 m, p=12×12,
s=3×3). (a) 360° shadow details; (b) optimized secondary sources; (c) antishadow; (d) residual field
(shadow).

The cancellers in the middle of the array sides have normal strength (0 dB), and the
canceller strengths at the corners of the array are almost 15 dB down. The corresponding
phases vary between −200° for the centre canceller and −130° at the corners.
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In Figure 6(c) is shown the antishadow-optimized canceller field alone (without
the primary source field). The two fields in combination generate the residual field
(shadow). Note that the central maximum has an exact antipressure of 107·6 dB to cancel
the 107·6 dB positive field. Note also that only the centre 15°×15° of the 60°×60° sector
is being controlled. The uncontrolled surrounding area (interesting square shapes in the
corners) is a by-product of the 15°×15° controlled field. In Figure 6(d) are shown
the details of the resulting 40 dB averaged shadow. It is fascinating to observe that two
smooth circular-like fields (positive primary and negative secondary) produce a residual
sharp rectangular shadow with a basically flat bottom (apart from low values near the
microphones going down to 43·7 dB).

4.3. 60°×15° 

In Figure 7 is shown a 60°×15°, 400 Hz shadow generated by three rows of nine
cancellers, equally spaced over 60° azimuth, 15° elevation controlled angles. This gives
the same discreteness factor as the 15°×15° shadow; i.e., l/d=0·858. Other details
are the same as in Figure 6. In Figure 7(a) is shown the 60° azimuthal control angle
crossing a complex uncancelled primary field, with zeros around 220°. As can be seen,
the resulting shadow averaged across the 15° elevation angle is 50 dB deep and has no
problem traversing the complex field. Radiation behind (180°) is again reduced. Radiation
to the side is increased, approaching that of the maximum uncancelled primary source
field.

In Figure 7(b) it is again shown that the maximum source strength is in the centre of
the canceller array (qs 1 20 dB), with cancellers on the top and bottom rows having
strengths between +5 dB and −10 dB. The levels at the corners are 25 dB down.
The phase is now showing alternate values of about 80° for adjacent cancellers varying
between −200° and −120°, with an average of about −160° for the centre cancellers.
The phase approaches −320° (+40°) for cancellers at the vertical edges of the canceller
array.

In Figure 7(c) are shown details of the antishadow, controlled over 60°×15°. The
antishadow across the 60° azimuth angle now resembles the negative of primary field
shown in Figure 4(b), including the zeros at approximately 222°. This is surprising
considering that the secondary field is not controlled outside 27·5° in elevation. Again,
the maximum sound pressure of the antifield is 107·6 dB, needed to cancel the primary
field. Finally, in Figure 7(d) are shown details of the resulting shadow; the residual field
is a well formed 60°×15°, 50 dB averaged flat bottomed shadow (with levels near the
microphones going down to 23·8 dB).

4.4. 60°×15°   

In Figure 8 is shown a 60°×15°, 400 Hz shadow generated by five rows of 13
cancellers, giving a discreteness factor of l/d=1·715. In Figure 8(a) is shown a deep 80 dB
shadow, with reduced radiation to the rear and excessive radiation (131 dB) to the side.
In Figure 8(b) are shown maximum source strengths of 30 dB in the centre rows 1, 3 and
5 and maximum levels of 50 dB (4·6 m3/s per canceller) in rows 2 and 4. The source
strengths at the vertical edges are about −20 dB.

The phase now exhibits 1180° phase reversals for alternate cancellers. In fine tuning,
the cancellers are obviously ‘‘fighting’’ each other in striving to produce the perfect
shadow. In this situation the cancellers are grossly inefficient, generating canceller strengths
in excess of 300 times the standard value. The excessive canceller strengths with alternate
phases explain the excessive q20 dB side radiation.
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Figure 7(a). 360° shadow details.

In Figure 8(c) are shown the results of the peculiar phenomena of alternate canceller
phasing—an almost perfect antishadow as compared with the positive primary field, shown
in Figure 10(b), again with a maximum level of 107·6 dB. Although the control is only
27·5° in elevation, the remarkable fact is that the antishadow is also being constructed
complete with zeros outside these control angles at about 18° in elevation. In Figure 8(d)
are shown the details of the resulting 60°×15° shadow, having an 80 dB averaged shadow
bottom.
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Figure 7(b). Optimized secondary sources.

4.5. 15°, 30°  60° 

In Figure 9 is shown the construction of 15°, 30° and 60°, 400 Hz shadows using
one, two and four 15°×15° unit shadows for discreteness factors, l/d=0·858, 1·287
and 2·145. These were generated by using three, five and nine columns by three, four
and five rows, respectively. It can be seen that the construction of arbitrary shadow
sizes, using additions of 15°×15° unit shadows, appears to be valid at this frequency.
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Figure 7(c). Antishadow.

Shadow depths of approximately 40 dB, 45 dB and 75 dB are formed for the three
increasing canceller densities. Note that the canceller array with the even number of
rows produces only marginally more attenuation than the previous lower canceller density
with an odd number of rows. Radiation to the side increases with azimuth angle and
canceller density.
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Figure 7(d). Residual field (shadow).

Figure 7. Details of the 60°×15° shadow (D=2 m, f=400 Hz, uo =60°×60°, ro =50 m, p=12×12;
s=9×3). (a) 360° shadow details; (b) optimized secondary sources; (c) antishadow; (d) residual field
(shadow).
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Figure 8(a). 360° shadow details.

4.6.  

In Figure 10 is shown the 15°×15°, 400 Hz average shadow depth (dB) as a function
of microphone distance (rm ) for various observer distances (ro ). Basically, the shadow
depth increases with microphone and observer distance from the primary sources. Below
10l the shadow mechanism does not work effectively (near field and rs =2l). For
microphone distances greater than 100l, the shadow depth levels off to about 40 dB.
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Figure 8(b). Optimized secondary sources.

For large observer distances ro q 100l and microphone distances rm between 10l and 100l,
the shadow depth in dB is given approximately by

dB=−40 log (rm /10). (10)

The dotted curve gives the level when the observer and microphone are at the same distance
ro = rm . The standard distance ro = rm =50 m (58·4l) is also shown.
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Figure 8(c). Antishadow.

4.7.  

In Figure 11 is shown the cancellation performance at 400 Hz for the 15°×15° unit
shadow. The shadow depths are plotted as a function of the discreteness factor l/d
for various canceller distances rs . The curves are unique for a compactness factor of
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Figure 8(d). Residual field (shadow).

Figure 8. Details of the 60°×15 shadow—high canceller density (D=2 m, f=400 Hz, uo =60°×60°,
ro =50 m, p=12×12, s=13×5). (a) 360° shadow details; (b) optimized secondary sources; (c) antishadow;
(d) residual field (shadow).

l/D=0·429 and for observer and microphone distances both of 50 m (58·4l). The
canceller matrix is shown on the top of the figure. It can be seen that the curves ‘‘turn
on’’ at about l/d=0·5, and shadows in excess of 100 dB are generated.
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Figure 9. The construction of 15°, 30° and 60° shadows by using one, two and four 15°×15° unit shadows
for various numbers of cancellers ( f=400 Hz, D=2 m, rs =2l). (a) a=15°: S=3×3 (1), S=4×4 (2),
S=5×5 (3). (b) a=30°: S=5×3 (1), S=7×4 (2), S=9×5 (3). (c) a=60°: S=9×3 (1), S=13×4
(2), S=17×5 (3).

For matrix densities greater than 6×6, shadows continue to grow in depth, but
excessive radiation to the side appears. For shadow depths greater than approximately
120 dB, the cancellation mechanism fails (points contained inside of the box). Note
again that even arrays are less efficient than odd arrays (the even arrays do not have the
more efficient central rows and columns of cancellers). The data suggests the prediction
curves

dB=−n log 2(l/d), (11)

where n=9, 13 and 16 for rs =8l, 2l and l/2, respectively. Compared with the 100 Hz
(l/D=1·71) performance curves in reference [1], all other parameters being the same, these
higher frequency curves turn on sooner and produce deeper shadows for the same
discreteness factor l/d.

Thus deep shadows are again obtained, even for non-compact sources. For example,
Figure 11 predicts that 040 dB shadows are achievable over a 15°×15° control angle
by using a 3×3 canceller array at 400 Hz over a 2 m square source. Or equivalently, the
same shadow depth can be achieved at 3200 Hz over a 0·25 m square source, as can be
seen from Table 1 (for the same l/D and l/d).
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Figure 10. 400 Hz distance curves showing the average shadow depth (dB) as a function of microphone
distance rm (l) for various observer distances ro (l). ro /l: q, 10; e, 20; +, 40; ×, 100; q, 1000 (D=2 m,
l=0·858 m, rs =2l, l/D=0·429, s=3×3, d=1, l/d=0·858, 15°×15° unit shadow.

Figure 11. 400 Hz performance curves showing the average shadow depth (dB) as a function of
non-dimensionalized canceller spacing (l/d) for various canceller distances ds (l): ds /l: ×, 1/2; e, 2; q, 8.
(D=2 m, l=0·858 m, l/D=0·429, ro = rm =50 m (58·4l), 15°×15° unit shadow.
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5. CONCLUSIONS

The active control of free field radiation from unconfined sources has been investigated.
It has been shown that practical shadows are possible when using a modest number of
cancellers.

In reference [1], deep acoustic shadows were generated electronically for compact
sources; i.e., with a compactness factor l/Dq 1, where D is the size of the source
distribution. In this paper, deep shadows are again obtained, even for a non-compact
source (l/DQ 1), provided that the discreteness factor l/dq 1, where d is now the
separation distance between cancellers.

Cancellers operating under optimum shadow performance intelligently adjust their
phase and strength to give optimum bell shaped secondary source distributions. This
removes diffraction effects produced by natural solid barriers, resulting in superior
shadows.

REFERENCES

1. S. E. W and B. V 1996 Journal of Sound and Vibration 190(3) (E. J. Richards
Memorial Issue), 565–585. Active control of environmental noise.

2. L R 1896 Theory of Sound. New York, Dover (1945 reissue). See Vol. 2, 97–148
(Original edition published by the MacMillan Company, 1896.)

3. S. E. W 1986 Journal of Sound and Vibration 108, 361–378. Sources and observers in
motion, I: time variant analysis and its implications for aerodynamical sound.

4. P. E. D 1965 Proceeding of the Fifth International Congress on Acoustics, Liège, Paper K56.
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APPENDIX: THEORETICAL DEVELOPMENT

A1.   

The complex sound pressure P(r) in Pascals at some distance r from a single,
monopole point sound source S, acting alone in space, can be calculated by using the
equation

P(r)=
jvr

4pr
q ej(vt− kr), (A1)

where v=2pf is the angular frequency of the source in rad/s, r is the density of the
propagating medium (for air at 20°C, r=1·21 kg/m3), q is the complex source strength
(m3/s), k=v/c=2p/l is the wavenumber (c is the speed of sound in the propagating
medium and l is the wavelength of the sound waves; for air at 20°C, c=343 m/s), and
kr is the phase change with propagation distance in radians. For further details on acoustic
sources; see, for example, references [2] and [3].

In the case of a constant frequency f, air density r and constant source strength q, with
the time dependent factor omitted, the above expression can be written as

P(r)=A(r) e−jkr, (A2)
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Figure A1. The line source geometry.

where e−jkr is a unit vector rotating with phase angle kr and A(r) is the sound pressure
amplitude given by

A(r)= (jvr/4pr)q. (A3)

A2.   

To calculate the sound pressure P(r) at a distance r from a finite line source of
length D, one can divide this source into a large number of small elements of length dx
(point sources). According to relations (A2) and (A3) and Figure A1, each of these source
elements contributes an incremental sound pressure dP to the overall complex sound
pressure at a distance point r, given by

dP(r)=A'(r) dx e−jkr, (A4)

where

A'(r)= (jvr/4pr)q'. (A5)

The total sound pressure from the entire source then becomes

P(r)=g
D/2

−D/2

A'(r) e−jkr dx, (A6)

where ro is the distance between the mid-point of the source and the observation point
P, r is the distance between the source element ds and the observation point P, and
q' is the source strength per unit length, q'= q/D, in which D is the size of the sound
source.

A3.  

Close to the source, the propagation distance r for each element dx is given below and
illustrated in more detail in Figure A2, where AO represents half the source in Figure A1.

One has

r= ro +Dr, Dr=AC− dr=AB, (A7)

dr=BP−CP, CP=zOP2 −OC2, (A8)
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Figure A2. The near field geometry.

OC=(D/2) cos u, OP=BP= ro , AC=(D/2) sin u, (A9)

Dr=(D/2) sin u− dr, dr= ro (1−z1− [(D/2ro ) cos u]2). (A10)

For the observer close to the source and drq l the full expression, equations (A7) and
(A10), have to be used in equation (A6). Upon using (1+x)n 1 1+ nx in equation (A10),
one has

dr2 (D2/8r0) cos2 u. (A11a)

Zeros (or minima) will occur when dr=(l/2)+ zl, giving

rz1 2 (D cos u)2/8l(1
2 + z). (A11b)

Using the first zero, z=0 (approaching the source), to characterize the extent of the near
field (collapse of far field), one has

rz1 2 (D cos u)2/4l. (A11c)

Thus the near field extends out in front of the source, not to the sides (cos u effect).
The higher the frequency, or the larger the source size, the further the near field extends.
Of course, the onset of the near field will extend much further than this (at least 2rz1

from the source).
Because the amplitude of sound at the observer, from each source element, varies

enormously with x in this region, there is no simple closed form solution. Here, one has
to rely on numerical solutions to evaluate equation (A6).

A4.  

For the observer far from the source, dr is always much less than l, and dr can be
neglected; the region is then referred to as the geometric far field. Here, the sound pressure
at the observer is relatively constant from each source element and equation (A10)
becomes:

Dr2 (D/2) sin u. (A12)

Assuming far field conditions, and neglecting small changes in r in the denominator of
expression (A5) as being insensitive compared to those in the exponential term, one can
replace r by ro . The term A'(r) is then replaced with A'(ro ) and considered constant in the
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integration. The complex sound pressure at ro can then be calculated from equations (A6),
(A7) and (A12) as

P(ro )=A'(ro ) g
D/2

−D/2

e−jk(ro + x sin u) dx=A'(ro ) g
D/2

0

e−jk(ro − x sin u) + e−jk(ro + x sin u) dx, (A13a)

and using cos x=(e jx +e−jx)/2 gives

P(ro )=2A'(ro ) e−jkro g
D/2

0

cos (kx sin u) dx, (A13b)

which can be written as

P(ro )=A'(ro )D e−jkroxc =A(ro ) e−jkroxc , (A14)

where A(ro )=A'(ro )D becomes the total sound pressure amplitude and

xc =(sin g)/g, g=(kD sin u)/2= pD sin u/l. (A15)

A5. - 

The interference function =xc = which takes account of the acoustic interference across
a continuous source distribution is shown in Figure A3. The zero order maximum of
the function =xc = is given when g=0; when D is very small compared with l, then =xc =
becomes

=xc ==lim
g:0

= (sin g)/g ==lim
g:0

=cos g =:1. (A16)

Here, there is no interference and the source is said to be compact, or equivalent to a point
source. Higher order maxima of the function =xc = are given when

g=(2n+1)p/2, where n=1, 2, . . . . (A17)

Figure A3. The continuous interference function =xc =.
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From equations (A15) and (A17), and for n=1, the first maximum is given by

g=(pD sin un1)/l=3p/2 or uz1 = sin−1 (3l/2D). (A18)

The function =xc = has zeroes when

g= zp, where z=1, 2, . . . . (A19)

Of particular interest is the first zero (z=1) indicated by point C on Figure A3. This zero,
according to equations (A15) and (A19), corresponds to an angle uz1 given by

g=(pD sin uz1)/l= p or uz1 = sin−1 (l/D). (A20)

Using this zero, one can now define a non-compact source with dimension D such that
the first zero of the function =xc = occurs for uE 90°, giving

De l. (A21)

Thus a non-compact source can be defined as one for which the source dimension is larger
than the acoustic wavelength. Here xQ 1 and the acoustic interference across the finite
distribution reduces the total sound pressure compared with that of a compact source with
the same source strength. This interference effect is equivalent to Fraunhofer diffraction
across a slit in optics.

A6. - 

For a two orthogonal dimensional source one can anticipate that there will be
the equivalent of two x functions, one for each dimension as depicted in Figure A4.
Here functions xcx and xcy are of the same type as above, where ux and uy are now the angles
of the planes containing the observer radius vector and the y and x co-ordinate axes,
respectively, make the surface normal (z-axis), as shown in Figure A4. In this case

P(ro )=A(ro ) e−jkroxcxxcy , (A22)

Figure A4. The two-dimensional source geometry.
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where

xcx =$sin 0ka sin ux

2 1>0ka sin ux

2 1%, (A23)

xcy =$sin 0kb sin uy

2 1>0kb sin uy

2 1%. ( A24)

For a circular source, the two x functions combine to form a single Bessel function, such
as that found in describing the interference across a loudspeaker diaphragm.

In the case of a three-dimensional source, a further equivalent function xc will be in
operation for the third dimension. For further information on acoustic interference from
finite acoustic source distributions, see, for example, reference [4].

A7.   

For the case of two point sound sources, the complex sound pressure at point P can
be calculated by using the superposition principle as

P(r)=P(r1)+P(r2), (A25)

where P(r1) and P(r2) are complex sound pressures at the observer point from sources
S1 and S2 respectively. Upon using equation (A1) this becomes

P(r)= (jvr/4pr1)q e−jkr1 + (jvr/4pr2)q e−jkr2. (A26)

For far field conditions, i.e., r�d2/4l, from equation (A11c), where d is now the separation
distance between the sources, one can assume that r1 1 r2 1 ro in the denominator, making

(jvr/4pr1)q1 ( jvr/4pr2)q1 ( jvr/4pro )q=A(r). (A27)

However retaining the more sensitive differences between r1 and r2 in the exponential term
gives

P(ro )=A(r)(e−jkr1 + e−jkr2)=A(ro ) e−jkro (1+e−jkDr), (A28)

where the path difference in the far field between sources is given by equation (A12) as

r2 − r1 =Dr= d sin u. (A29)

Expression (A28) now becomes

P(ro )=A(r) e−jkro =xd =, (A30)

where

xd =1+e−jg, g= kDr=(2pd sin u)/l. (A31)

The first zero of the discrete interference function =xd = occurs for g= p: i.e., for
sin u= l/2d. Therefore a two-point discrete source can be considered non-compact
according to the previously given definition, i.e., uE 90°, giving

de l/2. (A32)

A8. N      

In the case of N point sound sources arranged in a linear array as depicted in Figure A5,
expression (A28) for the complex sound pressure becomes

P(ro )=A(r) e−jkro (1+e−jkDr +e−jk2Dr +e−jk3Dr +· · ·+e−jk(N−1)Dr), (A33)
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Figure A5. A linear array of N discrete sources.

or

P(ro )=A(r) e−jkro s
n=N−1

n=0

(e−jkDr)n. (A34)

Since for the sum

SN = s
N−1

i=0

(e−ja)i =1+e−ja +e−j2a +e−j3a +· · ·+e−j(N−1)a (A35a)

the form:

SN −e−jaSN =1−e−jNa, i.e. SN =(1−e−jNa)/(1−e−ja), (A35b)

generally applies, for the sum in expression (A34) one has

s
n=N−1

n=0

(e−jkDr)n =
1−e−jkDrN

1−e−jkDr =
ej(k/2)Dr −e−j[(k/2)−Nk]Dr

e j(k/2)Dr −e−j(k/2)Dr

=e−j(k/2)(N−1)Dr0e j(k/2)DrN −e−j(k/2)DrN

e j(k/2)Dr −e−j(k/2)Dr 1, (A35c)

by using the identity sin x=(e jx −e−jx)/2j, the expression for pressure P(r) finally
becomes

P(ro )=A(r) e−jkro e−jk(N−1)Dr/2xd . (A36)
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Figure A6. The discrete interference function =xd =.

The exponential terms are phase angles and the discrete interference function xd is
given by

xd =(sin Ng)/sin g, (A37)

where

g= kDr/2= (kd sin u)/2= (pd sin u)/l. (A38)

The function =xd = is plotted in Figure A6 for the case N=9 point sources. This function
has two types of maxima, as follows.

(a) Major maxima occur when

g=mp, m=0, 1, 2, . . . . (A39)

For m=0,

xd =lim
g:0

(sin Ng)/(sin g)=N. (A40)

For m=1,

g= p=(pd sin u)/l, um1 = sin−1(l/d). (A41)

For good discrete representation (discreteness) um1 e 90°, giving dE l, or for a more
conservative definition, using g= p/2 (sin g=1) gives dE l/2.

(b) Minor maxima occur when

Ng=(2n+1)p/2, n=0, 1, 2, . . . , N−2. (A42)

For n=1,

g=3p/2N=(pd sin un1)/l, un1 = sin−1(3l/2Nd). (A43)

Zeros of the same function are defined by

Ng= zp, z=1, 2, 3, . . . , N−1. (A44)
For z=1,

g= p/N=(pd sin uz1)/l, uz1 = sin−1(l/Nd), (A45)
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where the separation distance between a line of N sources of overall length D is

d=D/(N−1). (A46)

The condition for source non-compactness, for uE 90°, becomes

g=[(p/l)d sin u]uE p/2 = p/N, (A47)

giving

de l/N or De [(N−1)/N]l. (A48)

For large N, conditions (A21) and (A48) become identical.
Thus the first zero determines the source non-compactness, and the second major

maximum determines whether the source has good discrete representation.
It can be seen from Figure A6 that the number of zeros and minor maxima between

two major maxima are given, respectively, by

Nz =N−1, Nn =N−2. (A49)

In the case of multi-dimensional discrete sources as with continuous sources, multiple
functions of the type xd must be included in expression (A36) for each dimension.
The interference between point acoustic sources is equivalent to the effect of a diffraction
grating in optics and X-ray diffraction in electromagnetics. For further information on
optical and electromagnetic interference see, for example, references [5–7].


